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Lecture 16

Compensation of Feedback Amplifiers 

     



How does the Gain of the Two-Stage Miller-Compensated 

Op Amp Compare with Internal Compensated Op Amp?
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Pole Locations

What closed-loop pole Q is typically required when 

compensating an op amp?

Recall:

Typically compensate so closed-loop poles make 

angle between 45o and 90o from imaginary axis
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Equivalently:
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Small Signal Analysis of Basic Two-Stage Op Amp

Differential Small Signal Equivalent
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(with Miller compensation)

(This happens to be the general form for a two-stage structure with a 

 quarter circuit and counterpart circuit !)
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Small Signal Analysis of Basic Two-Stage Op Amp
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This simplifies to:

Solving we obtain:

(with Miller compensation)

(This happens to be the general form for a two-stage structure with a 

 quarter circuit and counterpart circuit !)
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Basic Two-Stage Op Amp
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Right Half-Plane Zero in OL Gain  (from Miller Compensation) Limits Performance

It can be shown from quadratic equation that
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But what pole Q is desired? .707< Q <0.5

(because it increases the pole Q and thus requires a larger CC!)

(with Miller compensation)

Closed-form expression for CC!

Standard Feedback Gain

A
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Determination of CC

For 7T Miller-Compensated Op Amp:
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Basic Two-Stage Op Amp
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Question:  Can we express CC in terms of the pole spread k instead of in terms of Q?

Recall when criteria 2βAo<k<4βAo was derived (Lect 13), started with expression:
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No !   Relationship between k and Q was developed for 2nd-order lowpass 

open-loop gain (i.e. no zeros present!)
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Basic Two-Stage Op Amp with Feedback
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Standard feedback  gain with constant β
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For 7T Internal-Node Compensated Op Amp:

Determination of CC
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Basic Two-Stage Op Amp
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(with Miller compensation)
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Some Observations:

Zeros of NOL(s) affect poles of AFB(s)

Zeros of AFB(s) are of little concern when compensating op amp

DFB(s) is not dependent upon on functional form of feedback provided dead 

network is not altered
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Status on Compensation

Generally not needed for single-stage op amps

Analytical expressions were developed with               for 
     Two-stage with internal node compensation (no OL zeros)

     Two-stage with load compensation (no OL zeros)

     Two-stage with basic Miller compensation (OL zero, single series comp cap)

     Results applicable for 

Will now develop a more classical compensation strategy
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Compensation

From Wikipedia:  In electrical engineering, frequency compensation is a 

technique used in amplifiers, and especially in amplifiers employing 

negative feedback. It usually has two primary goals: To avoid the 

unintentional creation of positive feedback, which will cause the amplifier to 

oscillate, and to control overshoot and ringing in the amplifier's step 

response.

From Martin and Johns – no specific definition but makes comparisons with 

“optimal compensation” which also is not defined

From Allen and Holberg (p 243)   The goal of compensation is to maintain stability 

when negative feedback is applied around the op amp.

What is “compensation” or “frequency 

compensation”?

http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Amplifiers
http://en.wikipedia.org/wiki/Positive_feedback
http://en.wikipedia.org/wiki/Electronic_oscillation
http://en.wikipedia.org/wiki/Overshoot
http://en.wikipedia.org/wiki/Ringing
http://en.wikipedia.org/wiki/Step_response
http://en.wikipedia.org/wiki/Step_response


Compensation

From Gray and Meyer  (p634)  Thus if this amplifier is to be used in a feedback 

loop with loop gain larger than a0f1, efforts must be made to increase the 

phase margin.  This process is known as compensation.  

From Sedra and Smith (p 90)   This process of modifying the open-loop gain is 

termed frequency compensation, and its purpose is to ensure that op-amp circuits 

will be stable (as opposed to oscillatory).

From Razavi (p355)   Typical op amp circuit contain many poles.  In a folded-

cascode topology, for example, both the folding node and the output node 

contribute poles  For this reason, op amps must usually be “compensated”, that is, 

their open-loop transfer function must be modified such that the closed-loop circuit 

is stable and the time response is well-behaved.



Compensation

What is “compensation” or “frequency 

compensation” and what is the goal of 

compensation?

Nobody defines it or defines it correctly but everybody 

tries to do it !



Compensation

Compensation (alt Frequency Compensation)  is the 

manipulation of the poles and/or zeros of the open-loop 

amplifier so that when feedback is applied, the closed-loop 

amplifier will perform acceptably

Note this definition does not mention stability, positive 

feedback, negative feedback, phase margin,  or oscillation.

Note that acceptable performance is strictly determined by 

the user in the context of the specific application



Compensation (better definition)

Compensation (alt Frequency Compensation)  is the 

manipulation of the poles and/or zeros of the open-loop 

amplifier so that when feedback is applied, the closed-loop 

amplifier will perform acceptably.

Note this definition does not mention stability, positive 

feedback, negative feedback, phase margin,  or oscillation.

Note that acceptable performance is strictly determined by 

the user in the context of the specific application

Note this covers linear applications of op amps beyond just 

finite-gain amplifiers

circuit



Approach to Studying Compensation

Will attempt to develop a correct understanding of the concept of 

compensation rather than plunge into a procedure for “doing 

compensation”

Classical compensation  requires the use of some classical  

mathematical concepts



Compensation
Compensation is the manipulation of the poles and/or zeros 

of the open-loop amplifier so that when feedback is applied, 

the closed-loop circuit will perform acceptably

Acceptable performance is often application dependent and somewhat interpretation 

dependent

Although some think of compensation as a method of maintaining stability with 

feedback, acceptable performance generally dictates much more stringent 

performance than simply stability

Compensation criteria are often an indirect indicator of some type of desired (but 

unstated) performance

Varying approaches and criteria are used for compensation often resulting in 

similar but not identical performance

Acceptable performance should include affects of process and temperature 

variations

Over compensation often comes at a considerable expense (increased power, 

decreased frequency response, increased area,  …)



Compensation

• Often Phase Margin or Gain Margin criteria are used instead of pole Q

   criteria when compensating amplifiers

   (for historical reasons but must still be conversant with this approach)

• Nyquist plots are an alternative concept that are often used for 

compensating  amplifiers

• Phase Margin and Gain Margin criteria are directly related to the 

Nyquist Plots

• Compensation requirements are stongly β dependent

β (s )N (s )D (s )(s )D F B +=

Compensation requirements usually determined by closed-loop pole locations:

Characteristic Polynomial obtained from denominator term of basic feedback equation
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Pole Locations and Stability

Theorem:   A system is stable iff all closed-loop poles lie in the open left half-plane.

Im

Re

Stable

Im

Re

Im

Re

Unstable

Unstable

( ) ( ) ( )FBD s =1+A s β s

Review of Basic Concepts (from last lecture)



Consider a second-order factor of a denominator polynomial, P(s), 

expressed in integer-monic form

                                 P(s)=s2+a1s+a0

Then P(s) can be expressed in several alternative but equivalent ways
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These are all 2-paramater characterizations of the second-order factor

and it is easy to map from any one characterization to any other

{ (a1,a2)  (ω0,Q)   (ω0,ζ)   (p1,p2)  (p1,k)   (α, β)  (r, θ) }

Widely used alternate parameter sets:

Review of Basic Concepts (from last lecture)



Review of Basic Concepts (from last lecture)
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ωo = magnitude of pole

Q determines the angle of the pole

Observe:     Q=0.5 corresponds to two identical real-axis poles

                    Q=.707 corresponds to poles making 45o angle with Im axis
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What closed-loop pole Q is typically required when 

compensating an op amp?

Recall:

Typically compensate so closed-loop poles make 

angle between 45o and 90o from imaginary axis
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Pole Locations and Stability

Theorem:   A system is stable iff all closed-loop poles lie in the open left half-plane.

Note:  When designing finite-gain amplifiers with feedback, want to avoid 

having closed-loop amplifier poles close to the imaginary axis to minimize 

ringing in the time-domain and/or  to minimize peaking in the frequency 

domain 

Review of Basic Concepts
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Nyquist Plots

The Nyquist Plot is a plot of the Loop Gain (Aβ) versus jω in the complex plane

for - ∞ < ω < ∞

Theorem:   A system is stable iff the Nyquist Plot does not encircle the point 

-1+j0.

Note:  If there are multiple crossings of the real axis by the  Nyquist Plot, 

the term encirclement requires a formal definition that will not be presented 

here

Review of Basic Concepts

( ) ( ) ( )FBD s =1+A s β s

Note:  Multiple crossings issues are often of concern in higher-order control 

systems but seldom of concern in the compensation of operational 

amplifiers



Nyquist Plots
Review of Basic Concepts

-1+j0 Re

Im

ω = - ∞

ω = ∞
ω = 0

Example

• Stable since -1+j0 is not encircled

• Useful for determining stability when few computational tools are available

• Legacy of engineers and mathematicians of pre-computer era !!

Aβ(jω)

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots
Review of Basic Concepts

Example ( )
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In this example, Nyquist plot is circle of radius 25

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots
Review of Basic Concepts

• -1+j0 is the image of ALL poles 

• The Nyquist Plot is the image of the entire imaginary axis and separates

• the image complex plane into two parts

• Everything outside of the Nyquist Plot is the image of the LHP

-1+j0

Im

ReRe

Im β A(s)

s-plane complex-plane

( ) ( ) ( )FBD s = 1+A s β s



Nyquist PlotsReview of Basic Concepts

Nyquist plot can be generated with pencil and paper

• Important in the ‘30s - ‘60’s    (and prior!)

s-plane complex-plane

-1+j0 Re

Im

• Remember – not even a handheld calculator was available !

• No practical method for obtaining roots of a polynomial were 

available prior to emergence of good computers ! 



Who Invented the Handheld Calculator?



Kilby developed the first prototype handheld calculator in 1967

Who Invented the Handheld Calculator?

First commercial portable calculators introduced by Japan in 1970

Mainframe computers  (though quite primitive) were available at that 

time but turnaround was really slow and performance was limited

Pencil and paper and slide rule were primary tools available to analog circuit 

designers prior to the 70’s



Nyquist Plots

Review of Basic Concepts
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Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots

Review of Basic Concepts

But identification of a suitable

neighborhood is not natural

1+j0
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Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots

Review of Basic Concepts
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be sure Nyquist Plot does 

not get too close to -1+j0
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Might be useful to be sure image of 45o lines do not encircle -1+j0



Nyquist Plots

Review of Basic Concepts

What if this happened ?

1+j0

Im

Re

Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0

Re

Im
β A(s)

At least one pole would make an angle 

of less than 45o wrt Im axis 



Nyquist Plots

Review of Basic Concepts
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Phase margin is 180o – angle of Aβ when the magnitude of Aβ =1



Nyquist Plots

Review of Basic Concepts
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Unit Circle

Gain 
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Gain margin is 1 – magnitude  of Aβ when the angle of Aβ =180o

( ) ( ) ( )FBD s =1+A s β s



Nyquist and Gain-Phase Plots
Nyquist and Gain-Phase Plots convey identical information but gain-phase 

plots often easier to work with

Note:  The two plots do not correspond to the same system in this slide
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What do Nyquist or Gain-Phase Plots Have 

to Do with Compensation?

During classical compensation, the  frequency dependent 

gain function A(s) is altered to achieve a target gain margin 

or phase margin

This alteration is usually done by adding  capacitances some place in 

the amplifier 

Does not require obtaining any poles or zeros of A(s) or AFB(s) !

Remember – classical compensation using gain or phase margin 

criteria were developed when engineers were restricted to using 

pencil and paper and slide rule for amplifier design and 

compensation ! 



Nyquist and Gain-Phase Plots
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       do not need to replot |A| and phase of A to assess performance with different β
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Be aware of the multiple 

values of the arctan function !

Discontinuities do not exist in magnitude or phase plots
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But is it a good compensation ?

Stable !
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But is it a good compensation ?

Stable !
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Stay Safe and Stay Healthy !



End of Lecture 16
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