EE 435

Lecture 16

Compensation of Feedback Amplifiers



How does the Gain of the Two-Stage Miller-Compensated
Op Amp Compare with Internal Compensated Op Amp?
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Compensation criteria:
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What closed-loop pole Q is typically required when
compensating an op amp?
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Equivalently:

0.5<Q<.707

angle between 45° and 90° from imaginary axis



Small Signal Analysis of Basic Two-Stage Op Amp

(with Miller compensation)
Differential Small Signal Equivalent €
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(This happens to be the general form for a two-stage structure with a
quarter circuit and counterpart circuit !)



Small Signal Analysis of Basic Two-Stage Op Amp

(with Miller compensation)
Differential Small Signal Equivalent C|
|
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Vour (SCC +sC, +goo)+ Omo V2= SCCV,
Vv, (SCC +oq ) +0maVa = SCcVour

Solving we obtain:
VOUT _ Vd Imd (gmo B SCC)
SZCCCL + s[gmoCC + (CC(goo + god)+ CLgod )] + googod

This simplifies to:

V ~ \ gmd(gmo_SCC)

S C L+sgmo C+googod
(This happens to be the general form for a two-stage structure with a
quarter circuit and counterpart circuit !)



Basic Two-Stage Op Amp T
Determination of C. Standard Feedback Gain
(with Miller compensation)
gmd(ng B SCC)

Acs(s)

Ve s’C.C, +sC (gm0@+ﬁ q..9.

It can be shown from qué‘dratlc equation that
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For 7T Miller-Compehsated Op Amp:
V| gmd — gm1 : gmo :gm5

ss 1

goo — goS + 906 and bod - 902 + 904

\
But what pole Q is desired? .707<Q <0.5 \
\
Right Half-Plane Zero in OL Gain (from Miller Compensation) Limits Performance
(because it increases the pole Q and thus requires a larger C.!)
Closed-form expression for C!
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Basic Two-Stage Op Amp

(W|th Miller compensatlon

Standard Feedback Gain

gmd(gmo B SCC)
SZCCCL + SCC(gmo _B gmd)'l'B gmdgmo

Q — \/g\/g V Emo i CC _ CLB OmoYmd
CC Em Bgnd Q2 (gmo o Bgmd )2

Question: Can we express C. in terms of the pole spread k instead of in terms of Q7

2

Ars ()

Recall when criteria 2BA <k<43A,was derived (Lect 13), started with expression:

BA 0TOT
/B OTOT k =~ >
1_|_k OTOT kIarge klarge Q

No ! Relationship between k and Q was developed for 2"d-order lowpass
open-loop gain (i.e. no zeros present!)




Basic Two-Stage Op Amp with Feedback

Determination of C. A
(with Internal Node compensation) N
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Alternately, from quadratic egn:

CL 4 Imo9
Q — L B m0<Imd
\/CC Joo

CC — CLB nggmd
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Standard feedback gain with constant 3
nggmd

Open-loop gain
A(s)=

CL A.(S)=
1 = 8) = 6.6, + 5Cotn + Groos + B

gmogmd
SZCCCL + SCCgoo + ﬂgmogmd

A (s)=

For 7T Internal-Node Compensated Op Amp:

oo = Y05 T Yos gmo = gm5
Yod = Yoz T Yoa Jmd = 91

gm59m1
Q2 (905 + 906 )2

CC = CLB

Q*gs,



Basic Two-Stage Op Amp
(W|th Miller compensatlon

A

LA ]
Standard Feedback Gain Are =17 AB

A (S) _ gmd (gmo _SCC)
. S2CCCL +S gmoCC T googod

gmd(gmo B SCC)
s2CoCL +5C (9., -B 9,s)+ B 9pelpe

[

Acs(s)

Some Observations:

Zeros of Ng (s) affect poles of Agg(S)

Zeros of Acg(s) are of little concern when compensating op amp

Dgg(s) is not dependent upon on functional form of feedback provided dead
network is not altered

A ApB
A,=—— A =M
Poles for A T AB and A T+ AB are the same



Status on Compensation

Generally not needed for single-stage op amps

. . . A
Analytical expressions were developed with A= =11

Two-stage with internal node compensation (no OL zeros)

Two-stage with load compensation (no OL zeros)

Two-stage with basic Miller compensation (OL zero, single series comp cap)
Results applicable for A_, = AP,

for

Will now develop a more classical compensation strategy



Compensation

What is “compensation” or “frequency
compensation™?

From Wikipedia: In electrical engineering, frequency compensation is a
technique used in amplifiers, and especially in amplifiers employing
negative feedback. It usually has two primary goals: To avoid the
unintentional creation of positive feedback, which will cause the amplifier to
oscillate, and to control overshoot and ringing in the amplifier's step
response.

From Martin and Johns — no specific definition but makes comparisons with
“optimal compensation” which also is not defined

From Allen and Holberg (p 243) The goal of compensation is to maintain stability
when negative feedback is applied around the op amp.


http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Amplifiers
http://en.wikipedia.org/wiki/Positive_feedback
http://en.wikipedia.org/wiki/Electronic_oscillation
http://en.wikipedia.org/wiki/Overshoot
http://en.wikipedia.org/wiki/Ringing
http://en.wikipedia.org/wiki/Step_response
http://en.wikipedia.org/wiki/Step_response

Compensation

From Gray and Meyer (p634) Thus if this amplifier is to be used in a feedback
loop with loop gain larger than a,f,, efforts must be made to increase the

phase margin. This process is known as compensation.

From Sedra and Smith (p 90) This process of modifying the open-loop gain is
termed frequency compensation, and its purpose is to ensure that op-amp circuits

will be stable (as opposed to oscillatory).

From Razavi (p355) Typical op amp circuit contain many poles. In a folded-
cascode topology, for example, both the folding node and the output node
contribute poles For this reason, op amps must usually be “compensated”, that is,
their open-loop transfer function must be modified such that the closed-loop circuit

is stable and the time response is well-behaved.



Compensation

What is “compensation” or “frequency
compensation” and what is the goal of
compensation?

Nobody defines it or defines it correctly but everybody
triestodo it !



Compensation

Compensation (alt Frequency Compensation) is the
manipulation of the poles and/or zeros of the open-loop
amplifier so that when feedback is applied, the closed-loop
amplifier will perform acceptably

Note this definition does not mention stability, positive
feedback, negative feedback, phase margin, or oscillation.

Note that acceptable performance is strictly determined by
the user in the context of the specific application



Compensation (better definition)

Compensation (alt Frequency Compensation) is the
manipulation of the poles and/or zeros of the open-loop
amplifier so that when feedback is applied, the closed-loop
ampefier will perform acceptably.

circuit

Note this definition does not mention stability, positive
feedback, negative feedback, phase margin, or oscillation.

Note that acceptable performance is strictly determined by
the user in the context of the specific application

Note this covers linear applications of op amps beyond just
finite-gain amplifiers



Approach to Studying Compensation

Will attempt to develop a correct understanding of the concept of
compensation rather than plunge into a procedure for “doing
compensation”

Classical compensation requires the use of some classical
mathematical concepts



Compensation

Compensation is the manipulation of the poles and/or zeros
of the open-loop amplifier so that when feedback is applied,
the closed-loop circuit will perform acceptably

Acceptable performance is often application dependent and somewhat interpretation
dependent

Acceptable performance should include affects of process and temperature
variations

Although some think of compensation as a method of maintaining stability with
feedback, acceptable performance generally dictates much more stringent
performance than simply stability

Compensation criteria are often an indirect indicator of some type of desired (but
unstated) performance

Varying approaches and criteria are used for compensation often resulting in
similar but not identical performance

Over compensation often comes at a considerable expense (increased power,
decreased frequency response, increased area, ...)



Compensation

Compensation requirements usually determined by closed-loop pole locations:

N
Ao(s)=p 2 ACL<8>=ﬁ8 Dg(s)=D(s)+ B(s)N(s)

» Often Phase Margin or Gain Margin criteria are used instead of pole Q
criteria when compensating amplifiers
(for historical reasons but must still be conversant with this approach)

* Nyquist plots are an alternative concept that are often used for
compensating amplifiers

» Phase Margin and Gain Margin criteria are directly related to the
Nyquist Plots

« Compensation requirements are stongly 3 dependent

Characteristic Polynomial obtained from denominator term of basic feedback equation
Drg (s)=1+A(3)B(s)

A (S) B (S) defined to be the “loop gain” of a feedback amplifier



Review of Basic Concepts (from last lecture)

Pole Locations and Stability
Drg (s)=1+A(s)B(s)

Theorem: A system is stable iff all closed-loop poles lie in the open left half-plane.
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Review of Basic Concepts (from last lecture)
Consider a second-order factor of a denominator polynomial, P(s),
expressed in integer-monic form

P(s)=s?+a,s+a,
Then P(s) can be expressed in several alternative but equivalent ways

(s—ps)(s-P.)
if complex conjugate poles or real axis poles of same sign

W
s® +8—2+ Wi
Q

s +s2Lw, + W}
if real —axis poles
(s—py)(s—kp,)
and if complex conjugate poles,
(s+a+jB)(s+a—jB)
(s+re”)(s+re™)
Widely used alternate parameter sets:
{(@p,az) (W, Q) (Wy,4) (P1.P2) (P1,k) (a, B) (1, 0)}

These are all 2-paramater characterizations of the second-order factor
and it is easy to map from any one characterization to any other



Review of Basic Concepts (from last lecture)

W
s’+s—2 +w:
| Q
A 1M
0
VI :
sinB=——
2Q
Re
X

w, = magnitude of pole
Q determines the angle of the pole

Observe: Q=0.5 corresponds to two identical real-axis poles
Q=.707 corresponds to poles making 45° angle with Im axis



What closed-loop pole Q is typically required when
compensating an op amp?
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Recall: Equivalently:
Typically compensate so closed-loop poles make
ypeey 0.5<Q<.707

angle between 45° and 90° from imaginary axis



Review of Basic Concepts

Pole Locations and Stability

Theorem: A system is stable iff all closed-loop poles lie in the open left half-plane.

Note: When designing finite-gain amplifiers with feedback, want to avoid
having closed-loop amplifier poles close to the imaginary axis to minimize
ringing in the time-domain and/or to minimize peaking in the frequency

domain
| |Gain| rﬂeazlmgdoef | |VOUt| Ringing in Step
Response
f, L
> k - Im
. Q=5 X\ '\4/5",
45° pole-pair angle corresponds to _ 1 \f;\: Re
2 1 e %)
90° pole angle (on pole pair) corresponds to Q =3 4




Review of Basic Concepts

Nyquist Plots
Drg (s)=1+A(s)B(s)

The Nyquist Plot is a plot of the Loop Gain (AB) versus jw in the complex plane
for-o<w<wx

Theorem: A system is stable iff the Nyquist Plot does not encircle the point
-1+j0.

Note: If there are multiple crossings of the real axis by the Nyquist Plot,
the term encirclement requires a formal definition that will not be presented

here

Note: Multiple crossings issues are often of concern in higher-order control
systems but seldom of concern in the compensation of operational
amplifiers



Review of Basic Concepts

Nyquist Plots Deg (s)=1+A(s)B(s)

Example

/ AB(jw)

v

-1 y Re

» Stable since -1+j0 is not encircled
» Useful for determining stability when few computational tools are available

 Legacy of engineers and mathematicians of pre-computer era !!



Review of Basic Concepts

Nyquist Plots Drg (s)=1+A(s)B(s)
Example A(S):% B=1/2 A'B(ja)):jas)(il

In this example, Nyquist plot is circle of radius 25



Review of Basic Concepts

Nyquist Plots Deg (s)= 1+A(s)B(s)

s-plane / complex-plane

« -1+j0 is the image of ALL poles

« The Nyquist Plot is the image of the entire imaginary axis and separates
« the image complex plane into two parts

» Everything outside of the Nyquist Plot is the image of the LHP



Review of Basic Concepts Nyq u ISt PlOtS

2 Im
-1+4j0 Re
s-plane complex-plane

Nyquist plot can be generated with pencil and paper

s (g TV L PRI BTSSS IR TR L SOVTNE AT RSN Ny %
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* Important in the ‘30s - ‘60’s (and prior!)

Remember — not even a handheld calculator was available !

No practical method for obtaining roots of a polynomial were
available prior to emergence of good computers !



Who Invented the Handheld Calculator?

*Jack St. Clair Kilby (November 8, 1923 —
June 20, 2005) was an American electrical
engineer who took part (along with Robert
Noyce of Fairchild) in the realization of the
first integrated circuit while working at Texas
Instruments (Tl) in 1958. He was awarded the
Nobel Prize in Physics on December 10,
2000.['] Kilby was also the co-inventor of the
handheld calculator and the thermal printer,
for which he had the patents. He also had

patents for seven other inventions.l4]



Who Invented the Handheld Calculator?

Kilby developed the first prototype handheld calculator in 1967

First commercial portable calculators introduced by Japan in 1970

Mainframe computers (though quite primitive) were available at that
time but turnaround was really slow and performance was limited

Pencil and paper and slide rule were primary tools available to analog circuit
designers prior to the 70’s



Review of Basic Concepts

Nyquist Plots
Drg (s)=1+A(s)B(s)

1+j0
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Conceptually would like to
be sure Nyquist Plot does
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Review of Basic Concepts

Nyquist Plots
Drg (s)=1+A(s)B(s)

But identification of a suitable
neighborhood is not natural

N

14j0

A
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be sure Nyquist Plot does
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Review of Basic Concepts

Nyquist Plots

Might be useful to be sure image of 45° lines do not encircle -1+j0

e
o B
T s, g
- S >

Be 1+j0 \ F\:e

Conceptually would like to
be sure Nyquist Plot does
not get too close to -1+j0




Review of Basic Concepts

Nyquist Plots

At least one pole would make an angle
What if this happened ? P J

of less than 45° wrt Im axis

\1
(g‘,
2

o

NI

Conceptually would like to
be sure Nyquist Plot does y

not get too close to -1+j0 9
/ ’




Review of Basic Concepts

Nyquist Plots . Im

-1+4j0

Unit Circle

Phase margin is 180° — angle of AB when the magnitude of Ap =1

v

Re



Review of Basic Concepts
Nyquist Plots . Im
Drg (s)=1+A(s)B(s)

Gain
Margin

Unit Circle

Gain margin is 1 — magnitude of A when the angle of AR =180°



Nyquist and Gain-Phase Plots

Nyquist and Gain-Phase Plots convey identical information but gain-phase

plots often easier to work with
70 ,1AB]
60 -
50 -
40 A
30 1
20 1

10
A : :
-10 4 Gain
2 / -20 - \ Margin
W = e 3 -30 1
3 -40
| -

|

|

! 0 |
-1+4j0 |
w=0 -50 - :

w:—oo :
|

\ -100 -

-150 A __>

- —_—_,———— e — — — — -— — — — — — — — — — —

-200 - Phase 1

Margin
-250 A

-300 4 Phase |AB|

Note: The two plots do not correspond to the same system in this slide



What do Nyquist or Gain-Phase Plots Have
to Do with Compensation?

During classical compensation, the frequency dependent
gain function A(s) is altered to achieve a target gain margin

or phase margin

This alteration is usually done by adding capacitances some place in
the amplifier

Does not require obtaining any poles or zeros of A(s) or Ag(s) !

Remember — classical compensation using gain or phase margin
criteria were developed when engineers were restricted to using
pencil and paper and slide rule for amplifier design and
compensation !



Nyquist and Gain-Phase Plots

Nyquist and Gain-Phase Plots convey identical information but gain-phase
plots often easier to work with

Drg (s)=1+A(s)B(s) o
Mag A ol

A 'm ;g

) / :

W = e R 9 :;8:
TN Re 5

I > '
_1+j0/< 0
w=0
. . PhaseA:zso:
AP plots change with different values of 3

Often B is independent of frequency

in this case AB plot is just a shifted version of A
in this case phase of AB is equal to the phase of A

Instead of plotting AB, often plot |A] and phase of A and superimpose |B-'| and
phase of B to get gain and phase margins
do not need to replot |A| and phase of A to assess performance with different 3



Gain and Phase Margin Examples for 3=1
" 1000
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30 A
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0 1 1 1 1 1 1
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_20 i
-30 n

-40 -

Magnitude in dB
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-10 4
20 4
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-60 4
-70 4
-80 4
90 4
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o
»

Angle in degrees

Phase Margin

Good Phase Margin I



Gain and Phase Margin Examples

80 A

60 A

40 -

20 A

0 T

-20 4

Magnitude in dB

-40 -

-60 4

-80 -

100 H
80 A
60 A
40 -
20 A

0 T

Be aware of the multiple
values of the arctan function !

-20 -
-40 -
-60 A
-80 -
-100 -

Angle in degrees

Discontinuities do not exist in magnitude or phase plots



Gain and Phase Margin Examples 3=0.1 ,

80 -

o \
40 - 1
20 : B

-20 - E (U

-40 -

Magnitude in dB

-60 -

-80 -

Phase Margin

Angle in degrees

-300 -

Stable !
But is it a good compensation ?



Gain and Phase Margin Examples =1

80 -
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40 -

20 -

(0] f f f ; T
20 - | (0]

-40 -

Magnitude in dB

-60 -

-80 -

0]
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-300 -
Stable !
But is it a good compensation ?



Gain and Phase Margin Examples ,,__ 1000

: (S+1)(S +1j
70 - i 200
60 - :
m | =
Q ° \ B=.031
cC |
40
8 30 : 6_1
> |
= 2. !
(@)
© 10
s .
-10 | )
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0 >
8 -50 + w
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(D) -150
T R D L e
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<
Stable !

But is it a good compensation ?



Gain and Phase Margin Examples ~ ,,,__ 1000

Magnitude in dB

Angle in degrees

70 -

60 -

50 -

40 -

30

20 -

10 A

0

-10 -

-20 -

(s+1)(230+1j
B3=.31

Phase Margin

Unstable !



Gain and Phase Margin Examples

Magnitude in dB

Angle in degrees

70 A
60 -
50 A
40 -
30 H

20

10 -

0

-10 A
-20 A
-30 A
-40 -

-50 4

-100 A

-150 -

-200 A

-250 A

-300 -

T(s) =

=

Unstable !

—

1000
s+1)




Gain and Phase Margin Examples

Unstable !

Magnitude in dB

Angle in degrees

70 1
60 -
50 A
40 -
30 A
20 A
10 -

0

-10 A
-20 A
-30 A
40 -

-50 4

-100 A

-150 -

-200 A

-250 A

-300 -
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—

1000

16)= s+1)
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Gain and Phase Margin Examples

70 - i 1000
60 A ! T(s) =

50 5 \ ) s+1)°
40 - !

30 -
20 A
10 4
0
-10-
-20-
_30-
_40-

—

Magnitude in dB

0 1 1 E 1 : 1

-50 4

-100 A

Phase Margin | -180°

-150 -

-200 A

Angle in degrees

-250 A

Stable ! =0

But is it a good compensation ?




Gain and Phase Margin Examples |
- i 1000

60 - | -1 T(s) =

50 o~ B S (s+1)
40 1
30 -
20 |
10 -
0

-10 A | (0]
-20 A !
.30 - ;

40 -

Gain Margin

Magnitude in dB

-50 4

-100 A

-150 -

-200 A

Angle in degrees

-250 A

-300 -

Stable !
But is it a good compensation ?
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Stay Safe and Stay Healthy !
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